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Abstract—We synthesize amplitude- and phase-type com-
puter-generated holograms (diffractive gratings) for shaping
millimeter-wave fields. We design holograms using quasi-optical
back-propagation and rigorous optimization methods adopted
from diffractive optics. We present experimental results from a
plane-wave-generating hologram and a custom-designed field
shaper at 310 GHz. Holograms can be applied, e.g., in a compact
antenna test range and we propose their use for alignment
purposes.

Index Terms—Beam steering, diffraction, holographic gratings,
millimeter-wave technology, propagation, submillimeter-wave
technology.

I. INTRODUCTION

COMPUTER-GENERATED holograms are locally peri-
odic diffraction gratings that modify both the reflected

and transmitted electromagnetic fields. In conventional optical
holograms, the hologram structure is created by exposing a
photographic film to the interference pattern of two separate
mutually coherent beams, one scattered from the object and
the other constituting a reference plane-wave beam. Analogous
techniques are applied in, e.g., electron holography [1] and
digital holography [2]. An alternative method is to design the
hologram structure numerically and to print it or to etch it on
the hologram substrate material; these are called computer-gen-
erated holograms (CGHs), i.e., diffractive elements. The latter
approach is used in the fabrication of high-quality optical
instruments such as diffractive lenses and beam splitters [3].

Radio holograms are CGHs that operate with monochromatic
radio waves. They are usually designed to perform a simple
function with high quality, such as forming a propagating plane
wave from an incident Gaussian beam. Similarly, as we have
shown in [4]–[6], other beam forms, including radio-wave vor-
tices and Bessel beams, can also be formed with the use of ap-
propriately synthesized radio holograms. In this paper, we de-
scribe how more complex profiles can be designed, for instance,
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Fig. 1. Local grating structure of: (a) an amplitude and (b) a phase hologram.

using the back-propagation method. Thus far, radio holograms
have found their most useful applications in hologram-based
compact antenna test ranges (CATRs) at millimeter waves [7];
the development work continues, however, aiming for satellite
antenna testing at submillimeter waves.

II. AMPLITUDE AND PHASE HOLOGRAMS

We have investigated both amplitude- and phase-type radio
holograms. In the amplitude holograms, the diffraction grating
consists of metal strips on a dielectric film [see Fig. 1(a)]. We
have used Mylar films (75- m thick, relative permittivity

) with a copper layer (17 m) atop it. The desired pattern
is fabricated using photolithography and chemical wet etching.
In the millimeter-wave region, the skin depth of the radio-wave
field within copper is far below 1 m; hence, the metallic grating
effectively reflects all the RF field incident on the copper strip
and transmits the field through the slots between the strips. Ide-
ally, the transmitted field is modulated with a binary function
corresponding to the hologram grating. The transmitted field is
then diffracted according to the wavelength-scale structured pat-
tern comprising the hologram. However, in reality, the modula-
tion of amplitude is never purely binary. The deviation from the
ideal binary form is especially pronounced in the case of wave-
length-scale diffractive structures, and further optimization is,
therefore, necessary by rigorous modeling methods [8]. Typi-
cally, the first diffraction order generated by the hologram is
utilized. Such an amplitude hologram can also indirectly modu-
late the phase of the first-order field, as the phase can be coded
in the positions of the copper strips.

In phase-type holograms, the hologram structure features a
locally changing effective thickness encountered by the electro-
magnetic wave. In our study, the phase-type holograms are real-
ized with milled grooves on a dielectric substrate [see Fig. 1(b)].
The field passing through the grooves acquires a phase differ-
ence with respect to that between the grooves, leading to a phase
modulation of the transmitted field. Generally, phase-type ele-
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ments feature higher diffraction efficiencies than their ampli-
tude counterparts since their operation does not involve partial
blocking of the incident field.

III. DESIGN OF MILLIMETER-WAVE HOLOGRAMS

The physical operation of a (thin) holographic grating is de-
scribed with a transmission function, i.e., transmittance ,
which relates the transmitted electromagnetic field to the in-
cident field according to

(1)

The transmittance can be expressed as
, where is the amplitude modula-

tion, is the phase modulation, and are the coordinates
in the plane of the hologram.

The goal in the design process is to find such a transmit-
tance and the corresponding hologram structure that produces
a wave with the field distribution described by a specified com-
plex function

where and refer to the amplitude and phase in the beam-co-
ordinate system . Here, the beam-coordinate system may
be different from the hologram-coordinate system. In the scalar-
theoretical treatment, the hologram structure is directly related
to the desired transmittance, but in the case where electromag-
netic theory is required, sophisticated optimization methods are
required to obtain the hologram structure.

The hologram can operate on-axis, i.e., a normally incident
input field is converted into a goal field around the -axis,
in which case, the desired transmittance reduces to

. However, on-axis operation limits the degrees of
freedom in the design process and the achievable waveforms;
in particular, amplitude holograms can only produce direct
amplitude modulation, but no phase modulation.

Full control of the phase and amplitude can be attained if the
hologram is designed to operate off axis by adding a spatial car-
rier frequency to the goal field and utilizing a nonzero diffrac-
tion order, typically the first diffraction order, of the resulting
diffraction grating structure to produce the field . Assuming
carrier periodicity in the -direction, the transmittance ampli-
tude and phase are now

(2)

(3)

where is the carrier frequency, and and are re-
lated by a simple rotation of the coordinate system around the

-axis. Typically, for a hologram operating at the first diffraction
order, the maximal transmittances are for amplitude
holograms and for phase holograms, both according
to scalar theory.

For a nonzero , the first diffraction order is emitted from the
hologram at the angle

(4)

where is the wavelength of the electromagnetic field. In our
study, the holograms are typically designed to transmit the beam

to the angle 33 in order to create a volume where the un-
wanted diffraction orders do not disturb the custom-designed
radio beam.

In Sections III-A–C, we first describe elementary schemes
for determining and quantizing the transmittances for amplitude
and phase holograms and then consider the two design algo-
rithms for obtaining the corresponding hologram structure by
rigorous electromagnetic theory and for calculating the required
transmittance on the plane of the hologram.

A. Binary Quantization Based on Scalar Theory

Straightforward scalar theory may sometimes be sufficient
for hologram design. There are several ways to discretize the de-
sired transmission function in order to produce a binary-ampli-
tude or binary-phase hologram. Here, we describe two methods,
one for each hologram type.

1) Quantization of Amplitude Holograms: For amplitude
holograms, is a real positive function since amplitude
elements do not enable a modulation of the spatial phase of the
field. Ideally, a binary amplitude hologram either allows the
incident field to pass through undisturbed (transmittance )
or blocks it totally (transmittance ). Hence, the complex
function has to be converted to a binary real function . One
formulation of a suitable binary transmittance corresponding to
the desired goal field is [9], [10]

(5)

(6)

where

(7)

and is defined by (3).
2) Quantization of Phase Holograms: For phase holograms,

the transmittance assumes the form ,
i.e., there is no direct amplitude modulation. The phase shift is
realized by directly modulating the depth of the surface profile

. If the hologram substrate has a refractive index of
and the field exits to air, a binary phase-hologram structure pro-
ducing a phase-only goal field is obtained, e.g., as follows:

(8)

(9)

where the groove depth corresponds to a
phase delay of rad. Amplitude modulation can be realized by
modulating the groove depth of the profile.

B. Local Rigorous Optimization

If the spacing of the strips or grooves on the hologram is on
the order of a wavelength, straightforward use of scalar theory
proves insufficient; rather, rigorous electromagnetic theory must
be applied [8]. When the strip spacing on the hologram remains
constant within the range of several adjacent strips, the structure
may be assumed locally periodic without making a significant
error. Hence, methods developed for diffraction gratings can be
applied to analyze and optimize these structures.
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Fig. 2. Grating geometry and parameters for local rigorous optimization. For
phase holograms, the groove width w and depth h on the dielectric substrate
are to be optimized to obtain a proper transmission amplitude. For amplitude
holograms, only the groove width w is optimized since the thickness h of the
metallization on the dielectric film is fixed. The entire grating is shifted by the
vector s to correct for local phase deviations.

In local rigorous optimization, the complex transmittance
is assumed to have a constant spatial frequency in the

vicinity of each location on the hologram and the structure of
the period to remain invariant. In the design process, the re-
quired values of the amplitude and phase modulations
and , as well as the local grating period and
the angle of incidence are computed at every point of
the hologram. The optimal structure within one period is then
determined to yield the desired amplitude transmittance
(see Fig. 2). The local phase error is then corrected using the
detour-phase principle [11].

C. Back-Propagation Technique

To use the quantization schemes described above, the field
profile on the hologram surface must be known. If a certain pro-
file is desired at a finite distance from the hologram, the field
profile at the hologram, necessary to produce the desired field,
must be determined. For this, the back-propagation technique
can be used. Since local rigorous optimization does not take into
account the overall operation of the hologram, the back-prop-
agation method can also be used to ascertain that there occur
no defects in the field profile at a given distance. For instance,
diffraction from the finite aperture of a hologram element causes
deterioration of the beam fidelity upon propagation and must be
handled separately. In this scheme, the required aperture field
behind the hologram is found by numerically back-propagating
the desired field onto the hologram. Hence, unwanted diffrac-
tive deterioration of the beam can be eliminated at the specified
distance.

In the back-propagation method, the beam profile is specified
within the signal window, in a plane perpendicular to the prop-
agation axis; e.g., in a plane 50 cm behind the hologram. Fig. 3
illustrates the design process. The field is back-propagated onto
the hologram with the use of the angular-spectrum representa-
tion [12]; the fast Fourier transform (FFT) algorithm can be effi-
ciently utilized in the numerical implementation. Subsequently,
the required transmission function can be calculated and either
the scalar theory or local rigorous modeling may be used to find

Fig. 3. Back-propagation technique. Fourier transform of the desired field
profile at a certain distance from the hologram is propagated onto the hologram
to determine the field amplitude behind the hologram. The required hologram
structure is then calculated. Finally, the actual measured field distribution is
obtained experimentally [13], [14].

Fig. 4. Schematic of the measurement geometry for the holograms. The field
profile is measured in the signal window. The measurement plane is normal to
the z -axis. Absorbers are used around the hologram and the whole setup in
order to avoid direct and reflected radiation in the signal window.

a suitable hologram structure to convert the incident field into
the output field.

IV. EXPERIMENTAL RESULTS

We have designed and fabricated several holograms, em-
ploying both the amplitude- and phase-hologram techniques.
All the hologram results presented here have been designed
using the back-propagation scheme; both scalar theory and
rigorous optimization are used. Previously, we have presented
results obtained using elementary binary quantization based on
scalar theory [4]–[6].

A. Measurement Setup

The holograms are measured using an AB Millimètre
MVNA-8-350 network analyzer with ESA-1 and ESA-2 exten-
sions. A corrugated horn antenna is used as the transmitting
antenna and a pyramidal horn antenna is the receiving antenna.
A planar scanner is employed to obtain the two-dimensional
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(a) (b)

Fig. 5. Radio-wave field shaped in the form “HUT.” (a) Simulated and (b) measured field profile. The hologram was designed using the back-propagation
technique.

field profile in the signal window. A schematic view of the
measurement geometry is shown in Fig. 4. Absorbers are
used around the hologram and the whole setup to block the
wave propagating straight from the transmitter to the receiver
and to minimize reflections. The desired beam is designed
to propagate into an angle of 33 to avoid interference with
the waves propagated rectilinearly through the hologram. All
holograms measured in this work operate at 310 GHz.

B. Custom-Designed Field Patterns

The back-propagation method facilitates the synthesis of
holograms that serve to produce complicated field patterns in
the desired signal window. Using the design scheme illustrated
in Fig. 3, we have fabricated a hologram that yields a field
pattern of the form “HUT” (acronym for the Helsinki Univer-
sity of Technology); the measured field in the signal window
(1 m from the hologram center) is illustrated in Fig. 5. Due
to the binarization of the hologram structure, the theoretical
(simulated) field also differs from the desired one. However, the
measured and simulated fields are mutually in fair agreement.

The physical operation of custom-designed holograms is, in
general, complicated. Hence, we have chosen to use the back-
propagation method together with local design of the hologram.
At present, the hologram itself is synthesized using the elemen-
tary binarization described in Section III-A. In order to further
improve the fidelity of the field, local rigorous optimization of
the hologram is to be performed.

C. Field Profiles Designed Without Back-Propagation

To exemplify a field profile produced without the use of
the back-propagation technique, we present Bessel-beam and
radio-wave vortex measurements. Previous results of these
field shapes have been reported in [4]–[6]. In Fig. 6, the field
amplitude and phase of a tenth-order Bessel beam are shown.
The central minimum of the beam is due to the vorticity of
topological charge 10 carried by the beam.

Fig. 7 illustrates the deterioration of the field profile upon
propagation in the case of an electromagnetic vortex. An elec-
tromagnetic vortex, analogously to an optical one, has the phase
of the field rotating through around any loop encircling
the vortex axis; the integer is the topological charge (vor-
ticity) of the vortex. The field profile is a disk with a zero in the
middle to preserve continuity. Near the plane of the hologram,

(a) (b)

Fig. 6. Tenth-order Bessel-beam measurements. (a) Field amplitude and
(b) phase of the field.

Fig. 7. Deformation of the electromagnetic vortex field profile upon
propagation. The measurement distance from the plane of the hologram is
given below each field profile. The area of each picture is 10� 10 cm .

the field amplitude is constant. As the distance from the holo-
gram increases, diffraction rings appear due to the circular aper-
ture. Using the back-propagation method, the effect of the aper-
ture diffraction on the field profile can be removed at a certain
distance. As seen in Fig. 7, the node in the center of the vortex
core propagates invariantly without deformation. This property
of the vortex field may be utilized for alignment purposes, analo-
gously with the applications of optical vortices. In optics, corre-
sponding waveforms have also been used, for example, as phase
markers and for particle trapping [15]–[17].

D. Phase Holograms Producing Plane Waves

To test the design and fabrication methods for phase holo-
grams, as well as the fabrication materials, we have chosen
to synthesize phase holograms for plane-wave generation.
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Fig. 8. Measurements of a plane wave generated using a phase hologram.
Distributions of (above) amplitude and (below) phase of the wave.

To this end, we have used the back-propagation approach
with local rigorous optimization to design a phase hologram
generating a uniform planar field with a diameter of 10 cm at
the 1-m distance from the hologram. The hologram structure
of size 28 cm 24 cm was fabricated on a Teflon substrate
by a computer-controlled milling machine. Fig. 8 shows the
measured amplitude and phase distributions in the goal plane.
Excluding the amplitude peak on the left edge, the amplitude
and phase variations within the signal window are approxi-
mately 2 dB and 10 , respectively.

V. CONCLUSIONS

We have designed and fabricated both amplitude- and
phase-type holograms operating at submillimeter-wave fre-
quencies. The primary application area of these techniques
has been in the CATR for testing satellite antennas. We have
also synthesized CGHs to produce Bessel beams, radio-wave
vortices, and custom-designed field profiles at 310 GHz.

In addition to the binary quantization schemes applied in
this study, several other coding schemes have been suggested
in the optical regime utilizing subwavelength grating structures
[3]. Such feature sizes are difficult to fabricate at optical
wavelengths, but they may be readily realized in the radio-wave
regime. Thus, the existence of a large variety of hologram
techniques holds significant promise for hologram research and
radio-wave applications in the future.
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